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           I
n February 2013, Google Flu 
Trends (GFT) made headlines 
but not for a reason that Google 

executives or the creators of the fl u 
tracking system would have hoped. 
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from 
laboratories across the United States 
( 1,  2). This happened despite the fact 
that GFT was built to predict CDC 
reports. Given that GFT is often held 
up as an exemplary use of big data 
( 3,  4), what lessons can we draw 
from this error?

The problems we identify are 
not limited to GFT. Research on 
whether search or social media can 
predict x has become common-
place ( 5– 7) and is often put in sharp contrast 
with traditional methods and hypotheses. 
Although these studies have shown the 
value of these data, we are far from a place 
where they can supplant more traditional 
methods or theories ( 8). We explore two 
issues that contributed to GFT’s mistakes—
big data hubris and algorithm dynamics—
and offer lessons for moving forward in the 
big data age.

Big Data Hubris

“Big data hubris” is the often implicit 
assumption that big data are a substitute 
for, rather than a supplement to, traditional 
data collection and analysis. Elsewhere, we 
have asserted that there are enormous scien-
tifi c possibilities in big data ( 9– 11). How-
ever, quantity of data does not mean that 
one can ignore foundational issues of mea-
surement and construct validity and reli-

ability and dependencies among data (12). 
The core challenge is that most big data that 
have received popular attention are not the 
output of instruments designed to produce 
valid and reliable data amenable for scien-
tifi c analysis.

The initial version of GFT was a par-
ticularly problematic marriage of big and 
small data. Essentially, the methodology 
was to fi nd the best matches among 50 mil-
lion search terms to fit 1152 data points 
( 13). The odds of fi nding search terms that 
match the propensity of the fl u but are struc-
turally unrelated, and so do not predict the 
future, were quite high. GFT developers, 
in fact, report weeding out seasonal search 
terms unrelated to the fl u but strongly corre-
lated to the CDC data, such as those regard-
ing high school basketball ( 13). This should 
have been a warning that the big data were 
overfi tting the small number of cases—a 
standard concern in data analysis. This ad 
hoc method of throwing out peculiar search 
terms failed when GFT completely missed 
the nonseasonal 2009 infl uenza A–H1N1 
pandemic ( 2,  14). In short, the initial ver-
sion of GFT was part flu detector, part 
winter detector. GFT engineers updated 
the algorithm in 2009, and this model has 

run ever since, with a few changes 
announced in October 2013 ( 10, 
 15).

Although not widely reported 
until 2013, the new GFT has been 
persistently overestimating flu 
prevalence for a much longer time. 
GFT also missed by a very large 
margin in the 2011–2012 fl u sea-
son and has missed high for 100 out 
of 108 weeks starting with August 
2011 (see the graph ). These errors 
are not randomly distributed. For 
example, last week’s errors predict 
this week’s errors (temporal auto-
correlation), and the direction and 
magnitude of error varies with the 
time of year (seasonality). These 
patterns mean that GFT overlooks 
considerable information that 
could be extracted by traditional 
statistical methods. 

Even after GFT was updated 
in 2009, the comparative value of the algo-
rithm as a stand-alone fl u monitor is ques-
tionable. A study in 2010 demonstrated that 
GFT accuracy was not much better than 
a fairly simple projection forward using 
already available (typically on a 2-week lag) 
CDC data ( 4). The comparison has become 
even worse since that time, with lagged 
models significantly outperforming GFT 
(see the graph). Even 3-week-old CDC data 
do a better job of projecting current fl u prev-
alence than GFT [see supplementary mate-
rials (SM)].

Considering the large number of 
approaches that provide inference on infl u-
enza activity ( 16– 19), does this mean that 
the current version of GFT is not useful? 
No, greater value can be obtained by com-
bining GFT with other near–real-time 
health data ( 2,  20). For example, by com-
bining GFT and lagged CDC data, as well 
as dynamically recalibrating GFT, we can 
substantially improve on the performance 
of GFT or the CDC alone (see the chart). 
This is no substitute for ongoing evaluation 
and improvement, but, by incorporating this 
information, GFT could have largely healed 
itself and would have likely remained out of 
the headlines.
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Large errors in fl u prediction were largely 

avoidable, which offers lessons for the use 

of big data.
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Algorithm Dynamics

All empirical research stands on a founda-
tion of measurement. Is the instrumentation 
actually capturing the theoretical construct of 
interest? Is measurement stable and compa-
rable across cases and over time? Are mea-
surement errors systematic? At a minimum, 
it is quite likely that GFT was an unstable 
refl ection of the prevalence of the fl u because 
of algorithm dynamics affecting Google’s 
search algorithm. Algorithm dynamics are 
the changes made by engineers to improve 
the commercial service and by consum-
ers in using that service. Several changes in 
Google’s search algorithm and user behav-
ior likely affected GFT’s tracking. The most 
common explanation for GFT’s error is a 
media-stoked panic last fl u season ( 1,  15). 
Although this may have been a factor, it can-
not explain why GFT has been missing high 
by wide margins for more than 2 years. The 
2009 version of GFT has weathered other 
media panics related to the fl u, including the 
2005–2006 influenza A/H5N1 (“bird flu”) 
outbreak and the 2009 A/H1N1 (“swine fl u”) 
pandemic. A more likely culprit is changes 
made by Google’s search algorithm itself.

The Google search algorithm is not a 
static entity—the company is constantly 
testing and improving search. For example, 
the offi cial Google search blog reported 86 
changes in June and July 2012 alone (SM). 
Search patterns are the result of thousands of 
decisions made by the company’s program-
mers in various subunits and by millions of 
consumers worldwide.

There are multiple challenges to replicat-
ing GFT’s original algorithm. GFT has never 
documented the 45 search terms used, and 
the examples that have been released appear 
misleading ( 14) (SM). Google does provide 
a service, Google Correlate, which allows 
the user to identify search data that correlate 
with a given time series; however, it is lim-
ited to national level data, whereas GFT was 
developed using correlations at the regional 
level ( 13). The service also fails to return any 
of the sample search terms reported in GFT-
related publications ( 13,  14).

Nonetheless, using Google Correlate to 
compare correlated search terms for the GFT 
time series to those returned by the CDC’s 
data revealed some interesting differences. In 
particular, searches for treatments for the fl u 
and searches for information on differentiat-
ing the cold from the fl u track closely with 
GFT’s errors (SM). This points to the possi-
bility that the explanation for changes in rela-
tive search behavior is “blue team” dynam-
ics—where the algorithm producing the data 
(and thus user utilization) has been modi-

fi ed by the service provider in accordance 
with their business model. Google reported 
in June 2011 that it had modifi ed its search 
results to provide suggested additional search 
terms and reported again in February 2012 
that it was now returning potential diagnoses 
for searches including physical symptoms 
like “fever” and “cough” ( 21,  22). The for-
mer recommends searching for treatments 
of the fl u in response to general fl u inqui-
ries, and the latter may explain the increase 
in some searches to distinguish the fl u from 
the common cold. We document several other 
changes that may have affected GFT (SM).

In improving its service to customers, 
Google is also changing the data-generating 
process. Modifications to the search algo-
rithm are presumably implemented so as to 
support Google’s business model—for exam-
ple, in part, by providing users useful infor-
mation quickly and, in part, to promote more 
advertising revenue. Recommended searches, 
usually based on what others have searched, 
will increase the relative magnitude of certain 
searches. Because GFT uses the relative prev-
alence of search terms in its model, improve-
ments in the search algorithm can adversely 
affect GFT’s estimates. Oddly, GFT bakes in 
an assumption that relative search volume for 
certain terms is statically related to external 

events, but search behavior is not just exog-
enously determined, it is also endogenously 
cultivated by the service provider.

Blue team issues are not limited to 
Google. Platforms such as Twitter and Face-
book are always being re-engineered, and 
whether studies conducted even a year ago 
on data collected from these platforms can 
be replicated in later or earlier periods is an 
open question.

Although it does not appear to be an issue 
in GFT, scholars should also be aware of the 
potential for “red team” attacks on the sys-
tems we monitor. Red team dynamics occur 
when research subjects (in this case Web 
searchers) attempt to manipulate the data-
generating process to meet their own goals, 
such as economic or political gain. Twitter 
polling is a clear example of these tactics. 
Campaigns and companies, aware that news 
media are monitoring Twitter, have used 
numerous tactics to make sure their candidate 
or product is trending ( 23,  24).

Similar use has been made of Twitter 
and Facebook to spread rumors about stock 
prices and markets. Ironically, the more suc-
cessful we become at monitoring the behav-
ior of people using these open sources of 
information, the more tempting it will be to 
manipulate those signals.
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GFT overestimation. GFT overestimated the prevalence of fl u in the 2012–2013 season and overshot the 

actual level in 2011–2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly 

high fl u prevalence 100 out of 108 weeks. (Top) Estimates of doctor visits for ILI. “Lagged CDC” incorporates 

52-week seasonality variables with lagged CDC data. “Google Flu + CDC” combines GFT, lagged CDC estimates, 

lagged error of GFT estimates, and 52-week seasonality variables. (Bottom) Error [as a percentage {[Non-CDC 

estmate)�(CDC estimate)]/(CDC) estimate)}. Both alternative models have much less error than GFT alone. 

Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232 

for combined GFT and CDC. All of these differences are statistically signifi cant at P < 0.05. See SM.
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Transparency, Granularity, and All-Data

The GFT parable is important as a case study 
where we can learn critical lessons as we 
move forward in the age of big data analysis.

Transparency and Replicability. Repli-
cation is a growing concern across the acad-
emy. The supporting materials for the GFT-
related papers did not meet emerging com-
munity standards. Neither were core search 
terms identifi ed nor larger search corpus pro-
vided. It is impossible for Google to make its 
full arsenal of data available to outsiders, nor 
would it be ethically acceptable, given privacy 
issues. However, there is no such constraint 
regarding the derivative, aggregated data. 
Even if one had access to all of Google’s data, 
it would be impossible to replicate the analy-
ses of the original paper from the information 
provided regarding the analysis. Although it is 
laudable that Google developed Google Cor-
relate ostensibly from the concept used for 
GFT, the public technology cannot be utilized 
to replicate their fi ndings. Clicking the link 
titled “match the pattern of actual fl u activity 
(this is how we built Google Flu Trends!)” will 
not, ironically, produce a replication of the 
GFT search terms ( 14). Oddly, the few search 
terms offered in the papers ( 14) do not seem 
to be strongly related with either GFT or the 
CDC data (SM)—we surmise that the authors 
felt an unarticulated need to cloak the actual 
search terms identifi ed.

What is at stake is twofold. First, science 
is a cumulative endeavor, and to stand on the 
shoulders of giants requires that scientists 
be able to continually assess work on which 
they are building ( 25). Second, accumula-
tion of knowledge requires fuel in the form of 
data. There is a network of researchers wait-
ing to improve the value of big data projects 
and to squeeze more actionable information 
out of these types of data. The initial vision 
regarding GFT—that producing a more accu-
rate picture of the current prevalence of con-
tagious diseases might allow for life-saving 
interventions—is fundamentally correct, and 
all analyses suggest that there is indeed valu-
able signal to be extracted.

Google is a business, but it also holds in 
trust data on the desires, thoughts, and the 
connections of humanity. Making money 
“without doing evil” (paraphrasing Google’s 
motto) is not enough when it is feasible to do 
so much good. It is also incumbent upon aca-
demia to build institutional models to facil-
itate collaborations with such big data proj-
ects—something that is too often missing 
now in universities ( 26).

Use Big Data to Understand the Unknown. 
Because a simple lagged model for fl u preva-
lence will perform so well, there is little room 

for improvement on the CDC data for model 
projections [this does not apply to other 
methods to directly measure fl u prevalence, 
e.g., ( 20,  27,  28)]. If you are 90% of the way 
there, at most, you can gain that last 10%. 
What is more valuable is to understand the 
prevalence of fl u at very local levels, which is 
not practical for the CDC to widely produce, 
but which, in principle, more fi nely granular 
measures of GFT could provide. Such a fi nely 
granular view, in turn, would provide power-
ful input into generative models of fl u propa-
gation and more accurate prediction of the fl u 
months ahead of time ( 29– 33).

Study the Algorithm. Twitter, Facebook, 
Google, and the Internet more generally are 
constantly changing because of the actions 
of millions of engineers and consumers. 
Researchers need a better understanding of 
how these changes occur over time. Scien-
tists need to replicate findings using these 
data sources across time and using other data 
sources to ensure that they are observing 
robust patterns and not evanescent trends. For 
example, it is eminently feasible to do con-
trolled experiments with Google, e.g., looking 
at how Google search results will differ based 
on location and past searches ( 34). More gen-
erally, studying the evolution of socio-tech-
nical systems embedded in our societies is 
intrinsically important and worthy of study. 
The algorithms underlying Google, Twitter, 
and Facebook help determine what we fi nd 
out about our health, politics, and friends.

It’s Not Just About Size of the Data. There 
is a tendency for big data research and more 
traditional applied statistics to live in two 
different realms—aware of each other’s 
existence but generally not very trusting of 
each other. Big data offer enormous possi-
bilities for understanding human interac-
tions at a societal scale, with rich spatial and 
temporal dynamics, and for detecting com-
plex interactions and nonlinearities among 
variables. We contend that these are the most 
exciting frontiers in studying human behav-
ior. However, traditional “small data” often 
offer information that is not contained (or 
containable) in big data, and the very factors 
that have enabled big data are enabling more 
traditional data collection. The Internet has 
opened the way for improving standard sur-
veys, experiments, and health reporting 
( 35). Instead of focusing on a “big data rev-
olution,” perhaps it is time we were focused 
on an “all data revolution,” where we recog-
nize that the critical change in the world has 
been innovative analytics, using data from 
all traditional and new sources, and provid-
ing a deeper, clearer understanding of our 
world. 
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